Affiliation:
1. School of Chemistry , College of Science, University of Tehran , Tehran , Iran
2. Department of Chemical Engineering , Arak University , Arak , Iran
Abstract
Abstract
This research examines the removal efficiency of organic chloride (OC) compounds from the naphtha fraction of polluted crude oil (CO) using sintered micro and nano γ-Al2O3 at a consistent temperature of 30 °C. The adsorbents were characterized through BET, SEM-EDS, and XRD analyses. When utilizing micro-adsorbents to eliminate OC components from naphtha fraction samples containing initial contaminant concentrations of 105 and 8.5 mg/L, the maximum removal efficiency reached only 28 % and 56 %, respectively. In contrast, the use of nano-based adsorbents resulted in significantly higher adsorption percentages, exceeding 45 % and 96 % for the same two samples, respectively. Equilibrium investigations revealed that the Freundlich isotherm model yielded a superior match for the adsorption equilibrium data for the nano-adsorbents case, while the Langmuir model accurately characterized the data for the micro-adsorbents. Kinetic data analysis indicated that the adsorption kinetics for nano-adsorbents followed the pseudo-second-order model, while the micro-adsorbents obeyed the intra-particle diffusion mechanism. Overall, these findings suggest that sintered γ-Al2O3 nanoparticles (NPs) are more effective than microparticles (MPs) for the adsorptive removal of organic chlorides (OCs) from crude oil’s naphtha distillate.
Subject
Modeling and Simulation,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献