Separation of HCl/water mixture using air gap membrane distillation, Taguchi optimization and artificial neural network

Author:

Kalla Sarita12,Baghel Rakesh2,Upadhyaya Sushant2,Singh Kailash2

Affiliation:

1. Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat , 395007 , India

2. Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur , 302017 , India

Abstract

Abstract The aim of this paper is to analyze the performance of the air gap membrane distillation (AGMD) process for the separation of HCl/Water mixture first by applying Taguchi optimization approach and second by developing an artificial neural network (ANN) model. The experimental data which are fed as input to the above approaches are collected from the fabricated AGMD lab-scale setup using poly-tetra-fluoro-ethylene membrane of 0.22 µm pore size. The process input variables considered are bulk feed temperature, feed flow rate, air gap thickness, cooling water temperature and cooing water flow rate and AGMD performance index is the total permeate flux. The optimum operating condition is found to be at feed temperature 50 °C, air gap thickness 7 mm, cooling water temperature 5 °C and feed flow rate 10 lpm. Analysis of variance test is carried out for both Taguchi and ANN models. Regression model has also been developed for the comparison between experimental and model predicted data. The developed ANN model has been found well fitted with experimental data having R 2 value of 0.998. Based on the calculated percentage of contribution of each input parameter on the AGMD permeate flux, it can be concluded that feed temperature and air gap thickness have highest weightage whereas feed flow rate and cooling water temperature have moderate effects. Predictive ability of the developed ANN model is further checked with 2D contour plot. The distinctive feature of the paper is the development of the Taguchi experimental design and ANN model and then consequently integration of both Taguchi and ANN has been carried out to optimized the developed ANN model parameters.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3