Intensification of thorium biosorption onto protonated orange peel using the response surface methodology

Author:

Ghorbanpour Khamseh Ali A.1,Amini Younes1ORCID,Shademan Mohammad Mahdi1,Ghazanfari Valiyollah1

Affiliation:

1. Nuclear Fuel Cycle Research School , Nuclear Science and Technology Research Institute , Tehran , Iran

Abstract

Abstract In this research work, intensifying the possibility of protonated orange peel to uptake thorium (IV) ions from aqueous solutions in a batch system was investigated and optimized using the response surface methodology. The effect of three independent process variables including thorium initial concentration, pH, and biosorbent dosage was assessed based on the central composite design. The validity of the quadratic model was verified by the coefficient of determination. The optimization results showed that the rate of thorium (IV) uptake under optimal conditions is 183.95 mg/g. The modeling results showed that the experimental data of thorium biosorption kinetics are fitted well by the pseudo-second-order model. According to the results, the biosorption process reached equilibrium after around 4 h of contact. The Langmuir isotherm describes the experimental biosorption equilibrium data well. The maximum absorption capacity of protonated orange peel for thorium adsorption was estimated by the Langmuir isotherm at 236.97 mg/g. Thermodynamic studies show that thorium adsorption on protonated orange peel is thermodynamically feasible, spontaneous, and endothermic.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3