MSP designing with optimal fractional PI–PD controller for IPTD processes

Author:

Sengupta Sayani1,Karan Somak2,Dey Chanchal3

Affiliation:

1. Department of Applied Electronics and Instrumentation Engineering , Techno International New Town , Kolkata , West Bengal , India

2. Department of Applied Electronics and Instrumentation Engineering , Haldia Institute of Technology , Haldia , West Bengal , India

3. Instrumentation Engineering, Department of Applied Physics , University of Calcutta , Kolkata , West Bengal , India

Abstract

Abstract An effective tuning methodology of modified Smith predictor (MSP) based fractional controller designing for purely integrating time delayed (IPTD) processes is reported here. IPTD processes with pole at the origin are truly difficult to control; exhibit large oscillations once get disturbed from their steady state. Proposed MSP design consists of fractional PI (proportional-integral) and fractional PD (proportional-derivative) controllers together with P (proportional) controller. Fractional controllers are competent to provide improved closed loop responses due to flexibility of additional tuning parameters. Fractional tuning parameters of PI and PD controllers are derived through optimization algorithms where integral absolute error (IAE) is considered as cost function. Efficacy of the proposed methodology is validated for IPTD processes having wide range of time delay. Stability and robustness issues are explored under process model uncertainties with small gain theorem. Performance of the proposed MSP-FO(PI–PD) controller is validated through simulation study relating five IPTD process models. Overall satisfactory closed loop responses are observed for each case during transient as well as steady state operational phases.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tri-Parametric Fractional-Order Controller Design for Integrating Systems With Time Delay;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3