Response surface methodology (RSM) and artificial neural network (ANN) approach to optimize the photocatalytic conversion of rice straw hydrolysis residue (RSHR) into vanillin and 4-hydroxybenzaldehyde

Author:

Ahmad Kaleem1,Ghatak Himadri Roy1,Ahuja S. M.1

Affiliation:

1. Department of Chemical Engineering , Sant Longowal Institute of Engineering and Technology , Longowal 148106 , Punjab , India

Abstract

Abstract Effective use of waste lignin is always a challenging task, technologies have been applied in the past to get value-added compounds from waste lignin. However, the existing technologies are not economical and efficient to produce the value-added chemicals. Alkali soluble lignin from rice straw hydrolysis residue (RSHR) is subjected to photocatalytic conversion into value-added compounds. Photocatalysis is one of the multifarious advanced oxidation processes (AOPs), carried out with TiO2 nanoparticles under a 125 W UV bulb. Gas chromatography mass spectroscopy (GCMS) confirmed the formation of vanillin and 4-hydroxybenzaldehyde. RSM and ANN techniques are adopted to optimize the process conditions for the maximization of the products. The response one (Y 1) vanillin (24.61 mg) and second response (Y 2) 4-hydroxybenzaldehyde (19.51 mg) is obtained at the optimal conditions as 7.0 h irradiation time, 2.763 g/L catalyst dose, 15 g/L lignin concentration, and 14.26 g/L NaOH dose for alkali treatment, suggested by face-centered central composite design (CCD). RSM and ANN models are statistically analyzed in terms of RMSE, R 2 and AAD. For RSM the R 2 0.9864 and 0.9787 while for ANN 0.9875 and 0.9847, closer to one warrant the good fitting of the models. Therefore, in terms of higher precision and predictive ability of both models the ANN model showed excellence for both responses as compared to the RSM model.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3