Prediction of effect of wind speed on air pollution level using machine learning technique

Author:

Pandey Anuradha1,Kumar Vipin2,Rawat Anubhav2,Rawal Nekram1

Affiliation:

1. Civil Engineering Department , Motilal Nehru National Institute of Technology Allahabad , Prayagraj- , UP , India

2. Applied Mechanics Department, Motilal Nehru National Institute of Technology Allahabad , Prayagraj - , UP , India

Abstract

Abstract Air pollution is one of the most challenging issues poses serious threat to human health and environment. The increasing influx of population in metropolitan cities has further worsened the situation. Quantifying the air pollution experimentally is quite a challenging task as it depends on many parameters viz., wind speed, wind temperature, relative humidity, temperature etc. It requires the investment of huge money and manpower for controlling air pollution. Machine learning technique-based computer modelling reduces both of the parameters. In the present work, the dependence of air pollution level on wind speed and temperature has been taken up using machine learning in the form of ANN and LSTM model. The recorded data of air pollution level (PM2.5) is collected from a measurement station of Lucknow city situated at Central School, CPCB. The data is used in an Artificial Neural based network and in an LSTM model to predict suitably the level of air pollution for a known value of average wind speed and temperature without experimental measurements. LSTM model is found to predict the pollution level better than ANN for the developed ANN networks.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatiotemporal prediction of particulate matter concentration based on traffic and meteorological data;Transportation Research Part D: Transport and Environment;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3