Optimal sequencing of conventional distillation column train for multicomponent separation system by evolutionary algorithm

Author:

Giri Prashant A.1ORCID,Mahajan Yogesh S.2ORCID

Affiliation:

1. Department of Chemical Engineering , Finolex Academy of Management and Technology , Ratnagiri , Maharashtra , India

2. Chemical Engineering , Dr Babasaheb Ambedkar Technological University , Raigad , Maharashtra , India

Abstract

Abstract The best structure of multicomponent separation techniques can be obtained using optimal distillation sequencing. Because distillation sequences contribute significantly to the fixed and operational cost of the entire chemical process, developing a systematic approach for choosing the most appropriate and economic distillation sequences becomes an important field of study. Due to its high dimensional space and combinatorial nature, synthesis of the optimal conventional distillation column sequence is a tough problem in the field of process plant development and optimization. A novel method for the synthesis of an optimal conventional distillation column sequence is suggested in this study. Genetic algorithm, an evolutionary algorithm is at the heart of the proposed method. The Total Annual Cost (TAC) is the main basis used to evaluate alternative configurations. To estimate the total cost of each sequence, rigorous methods are used to design all columns in the sequence. The proposed method’s performance and that of the conventional quantitative approach are compared using the results of a five component benchmark test problem used by researchers in this field. According to the comparison results, the suggested algorithm outclasses the other methods and is more adaptable than other existing approaches.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3