Statistical modeling and optimization of the bleachability of regenerated spent bleaching earth using response surface methodology and artificial neural networks with genetic algorithm

Author:

Williams Almoruf O. F.1ORCID,Akanbi Oluwaseun D.1

Affiliation:

1. Chemical and Petroleum Engineeriing Department , University of Lagos Faculty of Engineering , Akoka Yaba , Nigeria

Abstract

Abstract In this study, the statistical modeling and optimization of the regeneration of spent bleaching earth (SBE) for re-use in the bleaching of crude palm oil (CPO) oil was examined. Having a good model will assist with the successful optimal regeneration of SBE and hence minimize the environmental pollution associated with its current disposal method which is based on dumping as landfills. The SBE samples were de-oiled with the Soxhlet extraction method, using n-hexane for 1 h at 60 °C; treated at temperatures ranging from 300–500 °C; at carbonization time between 30 and 45 min; and with hydrochloric acid concentrations between 1 and 2 M, at a constant stirring time of 30 min, respectively. The operating conditions for the experiment were according to the Central Composite Design (CCD) experimental design using the Design Expert software version 13. The modeling and optimization of the SBE regeneration process was carried out with the Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques. Five regression models were developed from the RSM approach and the best one selected based on model selection parameters recommended in the literature. Similarly, ten ANN models with the number of neurons in the hidden layer that varied from 2 to 16 were considered and the best one selected using the mean square error (MSE) and correlation coefficients (R) for the training, validation and testing performances. Results showed that the ANN technique led to a model with a better predictive ability than the RSM one. The optimum experimental bleachability of 71.5% for the regenerated de-oiled SBE was obtained at carbonization temperature of 500 °C, hydrochloric acid concentration of 2M and carbonization time of 45min. Using the Genetic Algorithm (GA), the ANN model resulted in an optimum bleachability of 70.87% with corresponding optimum factors at 468.19 °C, 2 M and 45 min, while the RSM approach gave an optimum bleachability of 73.52% at the corresponding factors of 498.99 °C, 1.57 M and 41.14 min for the carbonization temperature, acid concentration and carbonization time, respectively. The optimum experimental bleachability of the regenerated SBE achieved was 12.5% higher than that of virgin bleaching earth (VBE).

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3