Three-phase modeling and optimization of benzene alkylation in commercial catalytic reactors

Author:

Danesh Donya1,Farsi Mohammad1,Rahimpour Mohammad Reza1

Affiliation:

1. Department of Chemical Engineering , School of Chemical and Petroleum Engineering, Shiraz University , Shiraz , Iran

Abstract

Abstract The main object of this research is heterogenous modeling of benzene alkylation in three phase reactors based on the mass and energy balance equations by coupling the kinetic and equilibrium models and optimization the process conditions to enhance production capacity. In the first step, the alkylation reactors are simulated considering a three-phase model including heat and mass transfer resistances in the solid catalyst, gas and liquid phases. To prove the accuracy of developed model and adopted assumptions, the simulation results are compared with the plant data. Based on the simulation results, the benzene conversion and ethylbenzene selectivity in the alkylation reactors are 15.03 and 94.60% at the conventional condition. In the second step, considering the temperature of inlet streams to the reactors as decision variables, an optimization problem is formulated to maximize the ethylbenzene production rate as the objective function. Based on the simulation results, applying optimal condition on the system improves the ethylbenzene production by 1.33% at the same ethylene conversion compared to the conventional condition.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3