Direct synthesis based sliding mode controller design for unstable second order with dead-time processes with its application on continuous stirred tank reactor

Author:

Ali Mohammed Hasmat1,Anwar Md Nishat1

Affiliation:

1. Department of Electrical Engineering , National Institute of Technology Patna , Patna , India

Abstract

Abstract Unstable processes are challenging to control because they have one or more positive poles that produce unrestrained dynamic activity. Controlling such unstable plants becomes more challenging with the occurrence of the delay. This article presents a novel direct synthesis based sliding mode controller design for unstable second order plus dead-time processes. A sliding surface with three parameters has been considered. The continuous control law, which is responsible for maintaining the system mode to the desired sliding surface mode, has been obtained using the direct synthesis approach. The discontinuous control law parameters have been obtained using the differential evolution optimization technique. A desired reference model is considered for the direct synthesis method, and an objective function is constituted in terms of performance measure (integral absolute error) and control effort measure (total variation of controller output) for the optimization approach. Illustrative examples show the superiority of the proposed controller design method over recently reported literature, especially in terms of load rejection. The proposed controller approach is further extended to control the temperature of a nonlinear chemical reactor. Furthermore, the robustness of the proposed controller is also investigated for plant parametric uncertainty.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3