Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction

Author:

Xu Kunming1

Affiliation:

1. 74736 Campus Planning and Construction Center, Changchun University , Changchun 130022 , Jilin , China

Abstract

Abstract Since cooling load estimation directly impacts air conditioning control and chiller optimization, it is essential for increasing the energy efficiency of cooling systems. Machine learning outshines traditional regression analysis by efficiently managing vast datasets and discerning complex patterns influenced by various factors like occupancy, building materials, and meteorology. These capabilities greatly enhance building management and energy optimization. The primary objective of this study is to introduce a framework based on ML algorithms to accurately predict cooling loads in buildings. The Decision Tree model was chosen as the core algorithm for this purpose. Furthermore, as an innovative approach, four metaheuristic algorithms – namely, the Improved Arithmetic Optimization Algorithm, Prairie Dog Optimization, Covariance Matrix Adaptation Evolution Strategy, and Coyote Optimization Algorithm – were employed to enhance the predictive capabilities of the Decision Tree model. The dataset which utilized in this study derived from previous studies, the data comprised of eight input parameters, including Relative Compactness, Surface Area, Wall Area, Roof Area, Overall Height, Orientation, Glazing Area, and Glazing Area Distribution. With an astonishing R 2 value of 0.995 and a lowest Root Mean Square Error value of 0.660, the DTPD (DT + PDO) model performs exceptionally well. These astounding findings demonstrate the DTPD model’s unmatched precision in forecasting the results of cooling loads and point to its potential for useful implementation in actual building management situations. Properly predicting and managing cooling loads ensures that indoor environments remain comfortable and healthy for occupants. Maintaining optimal temperature and humidity levels not only enhances comfort but also supports good indoor air quality.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3