Enhancing heat exchanger efficiency with novel perforated cone-shaped turbulators and nanofluids: a computational study

Author:

Wang Limin123,Wang Junqiang13,Tang Jiajia12,Zho Xuliong4

Affiliation:

1. Department of Mechanical and Electrical Engineering , Hebei Vocational University of Technology and Engineering , Xingtai 054000 , China

2. Small and Medium-Sized Non-Standard Equipment Technology Innovation Center of Hebei Province , Xingtai 054000 , China

3. Valve Intelligent Equipment Engineering Research Center of Hebei Province , Xingtai 054000 , China

4. Engineering College, China University of Petroleum-Beijing at Karamay , Karamay 834000 , Xinjiang , China

Abstract

Abstract The present paper presents a numerical investigation of heat transfer in an exchanger fitted with a modified conical-shaped turbulator containing water/Fe2O3 nanofluid. The study aims to address the critical need for improved heat exchanger efficiency, a vital component in various industries, including the chemical, power generation, and food industries. The work focuses on achieving enhanced heat transfer performance within a smaller volume, a primary goal of modern technology and industrial processes. The innovation in this study lies in the design and analysis of a novel conical turbulator, which has not been explored extensively in the context of heat exchangers fitted with nanofluids. Unlike traditional methods, which often rely on active or semi-active means to enhance heat transfer, this research introduces a passive approach through the incorporation of turbulators. Specifically, the study investigates the use of perforated cone-shaped turbulators in conjunction with nanofluids to boost heat transfer performance. The research employs state-of-the-art computational fluid dynamics (CFD) models, allowing for a comprehensive evaluation of the turbulator’s performance across a wide range of Reynolds numbers (Re = 4000–20,000). It further examines the influence of various turbulator parameters, nanoparticle content, and geometry on heat transfer efficiency. Key findings indicate that the modified turbulator exhibits exceptional performance, increasing Nusselt numbers by 3.4–5.4 times and friction coefficients by 2.3–1.8 times compared to smooth pipes. Particularly noteworthy is the 92 % increase in the Nusselt number achieved with a mere 2 % increase in the Fe2O3 nanoparticle content. The present study introduces a novel passive heat transfer enhancement method using perforated cone-shaped turbulators and nanofluids, filling a significant gap in existing research. The innovative turbulator design and its substantial performance improvements offer promising prospects for achieving higher heat exchanger efficiency, making it a valuable contribution to thermal systems and heat transfer engineering.

Funder

This work was supported by the project of Science Research Project of Hebei Education Department

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3