Three-dimensional CFD study on thermo-hydraulic behaviour of finned tubes in a heat exchange system for heat transfer enhancement

Author:

Raje Mohit1,Dhiman Amit Kumar1

Affiliation:

1. Computational Fluid Dynamics Lab, Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee 247 667 , Uttarakhand , India

Abstract

Abstract The present study performs a three-dimensional CFD analysis to investigate the hydrodynamic and thermal properties of annular finned tubes in a heat exchange system. All computations are performed in the turbulent flow regime (4330 ≤ Re ≤ 8790), and the Transition SST model is applied for turbulence modelling. The impact of Prandtl number (0.7 ≤ Pr ≤ 50) on the various parameters, such as the heat transfer coefficient, heat transfer rate, and pressure drop, are considered. The results indicate that the thermo-hydraulic behaviour is significantly affected by incrementing both Reynolds and Prandtl numbers. The fin’s surface temperature distribution is examined to get a better insight into its thermal performance, and it is observed that the rear portion of the fin contributes the least to heat transfer. Other important parameters like the fin efficiency and Colburn heat transfer factor are found to significantly impact the performance of the heat exchange system for the above range of settings. The velocity contours show the horseshoe vortex formation near the fin-tube junction, and the channelling effect is observed between consecutive tubes. Different fluids are compared based on the j/f factor for enhanced heat transfer at the minimum possible flow resistance.

Funder

Science and Engineering Research Board

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3