Bioconsolidation of Stone Monuments. An Overview

Author:

Nazel Tarek

Abstract

Abstract This article reviews the carbonation process through biomineralization referred to as Microbial Induced Calcium Carbonate Precipitation (MICCP) for the conservation of carbonate stone monuments and historic building materials. This biological process widely occurs in nature as microbes produce inorganic materials within their basic metabolic activities. The first patent, which explained this method dates from approximately twenty-five years ago. Since then, different research groups have investigated substitute methodologies and various technical applications to provide a protective calcium carbonate layer on the surface of deteriorated historic buildings and stone monuments as well as to consolidate their inner weakened structure through this biodeposition process. The article reviews selected literature, highlights open queries and promotes discussion of a selection of issues, production mechanisms, application techniques, performance and bonding with stone structure. While many questions regarding this significant method have been focused in published sources, there are considerable possibilities for new research.

Publisher

Walter de Gruyter GmbH

Reference158 articles.

1. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation;Appl Environ Microbiol,2011

2. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation;J Microbiol Methods,1999

3. Biobrush research monograph : novel approaches to conserve our European heritage;May,2001

4. Procede de traitement biologique d‘une surface artificielle;French Patent,1990

5. Mineral formation by bacteria in natural microbial communities;FEMS Microbiol Ecol,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3