Polynomial sequences in discrete nilpotent groups of step 2

Author:

Ionescu Alexandru D.1,Magyar Ákos2,Mirek Mariusz345,Szarek Tomasz Z.56

Affiliation:

1. Department of Mathematics, Princeton University , Fine Hall, Washington Rd. , Princeton , NJ 08544 , United States

2. Department of Mathematics, University of Georgia , Athens , GA 30602 , United States

3. Institute for Advanced Study , Princeton , NJ 08540 , USA

4. Department of Mathematics, Rutgers University , Piscataway , NJ 08854 , USA

5. Instytut Matematyczny, Uniwersytet Wrocławski , 50-384 Wrocław , Poland

6. BCAM - Basque Center for Applied Mathematics , 48009 Bilbo , Bizkaia , Spain

Abstract

Abstract We discuss some of our work on averages along polynomial sequences in nilpotent groups of step 2. Our main results include boundedness of associated maximal functions and singular integrals operators, an almost everywhere pointwise convergence theorem for ergodic averages along polynomial sequences, and a nilpotent Waring theorem. Our proofs are based on analytical tools, such as a nilpotent Weyl inequality, and on complex almost-orthogonality arguments that are designed to replace Fourier transform tools, which are not available in the noncommutative nilpotent setting. In particular, we present what we call a nilpotent circle method that allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference59 articles.

1. T. Austin, A proof of Walshas convergence theorem using couplings, Int. Math. Res. Not. IMRN 15 (2015), 6661–6674.

2. T. Austin, On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems 30 (2010), 321–338.

3. A. Bellow, Measure Theory Oberwolfach 1981. in: Proceedings of the Conference held at Oberwolfach, June 21–27, 1981. Lecture Notes in Mathematics 945, editors D. Kölzow and D. Maharam-Stone. Springer-Verlag Berlin Heidelberg (1982), Section: Two problems submitted by A. Bellow, pp. 429–431.

4. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), no. 3, 337–349.

5. V. Bergelson, Ergodic Ramsey theory - an update, ergodic theory of Zd-actions, in: M. Pollicott and K. Schmidt (Eds), London Mathematical Society Lecture Note Series, vol. 228, 1996, pp. 1–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3