Affiliation:
1. Universität Paderborn, Institut für Mathematik , 33098 Paderborn , Germany
Abstract
Abstract
In a smoothly bounded convex domain
Ω
⊂
R
n
${\Omega}\subset {\mathbb{R}}^{n}$
with n ≥ 1, a no-flux initial-boundary value problem for
u
t
=
Δ
u
ϕ
(
v
)
,
v
t
=
Δ
v
−
u
v
,
$$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$
is considered under the assumption that near the origin, the function ϕ suitably generalizes the prototype given by
ϕ
(
ξ
)
=
ξ
α
,
ξ
∈
[
0
,
ξ
0
]
.
$$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$
By means of separate approaches, it is shown that in both cases α ∈ (0, 1) and α ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy
C
(
T
)
≔
ess sup
t
∈
(
0
,
T
)
∫
Ω
u
(
⋅
,
t
)
ln
u
(
⋅
,
t
)
<
∞
for all
T
>
0
,
$$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$
with sup
T>0
C(T) < ∞ if α ∈ [1, 2].
Funder
„Deutsche Forschungsgemeinschaft“
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献