Affiliation:
1. School of Mathematical and Physical Sciences , University of Sussex , Falmer , Brighton , UK
Abstract
Abstract
In this paper we prove gradient estimates of both elliptic and parabolic types, specifically, of Souplet-Zhang, Hamilton and Li-Yau types for positive smooth solutions to a class of nonlinear parabolic equations involving the Witten or drifting Laplacian on smooth metric measure spaces. These estimates are established under various curvature conditions and lower bounds on the generalised Bakry-Émery Ricci tensor and find utility in proving elliptic and parabolic Harnack-type inequalities as well as general Liouville-type and other global constancy results. Several applications and consequences are presented and discussed.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献