Bayesian estimation and prediction for network meta-analysis with contrast-based approach

Author:

Noma Hisashi1ORCID

Affiliation:

1. Department of Data Science , The Institute of Statistical Mathematics , Tokyo , Japan

Abstract

Abstract Network meta-analysis is gaining prominence in clinical epidemiology and health technology assessments that enable comprehensive assessment of comparative effectiveness for multiple available treatments. In network meta-analysis, Bayesian methods have been one of the standard approaches for the arm-based approach and are widely applied in practical data analyses. Also, for most cases in these applications, proper noninformative priors are adopted, which does not incorporate subjective prior knowledge into the analyses, and reference Bayesian analyses are major choices. In this article, we provide generic Bayesian analysis methods for the contrast-based approach of network meta-analysis, where the generic Bayesian methods can treat proper and improper prior distributions. The proposed methods enable direct sampling from the posterior and posterior predictive distributions without formal iterative computations such as Markov chain Monte Carlo, and technical convergence checks are not required. In addition, representative noninformative priors that can be treated in the proposed framework involving the Jeffreys prior are provided. We also provide an easy-to-handle R statistical package, BANMA, to implement these Bayesian analyses via simple commands. The proposed Bayesian methods are illustrated using various noninformative priors through applications to two real network meta-analyses.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3