Two-element acoustic array gives insight into ice-ocean interactions in Hornsund Fjord, Spitsbergen

Author:

Głowacki Oskar,Deane Grant B.,Moskalik Mateusz,Tęgowski Jarosław,Blondel Philippe

Abstract

AbstractGlacierized fjords are dynamic regions, with variable oceanographic conditions and complex ice-ocean interactions, which are still poorly understood. Recent studies have shown that passive underwater acoustics offers new promising tools in this branch of polar research. Here, we present results from two field campaigns, conducted in summer 2013 and spring 2014. Several recordings with a bespoke two-hydrophone acoustic buoy were made in different parts of Hornsund Fjord, Spitsbergen in the vicinity of tidewater glaciers to study the directionality of underwater ambient noise. Representative segments of the data are used to illustrate the analyses, and determine the directions of sound sources by using the time differences of arrivals between two horizontally aligned, broadband hydrophones. The results reveal that low frequency noise (< 3 kHz) is radiated mostly from the ice cliffs, while high-frequency (> 3 kHz) noise directionality strongly depends on the distribution of floating glacial ice throughout the fjord. Changing rates of iceberg production as seen for example in field photographs and logs are, in turn, most likely linked to signal amplitudes for relevant directions. These findings demonstrate the potential offered by passive acoustics to study the dynamics of individual tidewater glaciers.

Publisher

Walter de Gruyter GmbH

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Directionality of the ambient noise field in an glacial bay of the of;DeaneG;Arctic Journal Acoustical Society America,2014

2. Passive underwater acoustic evolution of a calving event of;PettitE;Annals Glaciology,2012

3. Fluctuations of tidewater glaciers in Hornsund Fjord since the beginning of the th century;BłaszczykM;Polish Polar Research,2013

4. Computational Ocean Acoustics nd New York;JensenF;Edition,2011

5. Recent contributions of glaciers and ice caps to sea level rise;JacobT;Nature,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3