Quality Indicators for Statistical Disclosure Methods: A Case Study on the Structure of Earnings Survey

Author:

Templ Matthias1

Affiliation:

1. Statistics Austria, Dept. of Methodology, Guglgasse 13, Vienna 1110, Austria.

Abstract

Abstract Scientific- or public-use files are typically produced by applying anonymisation methods to the original data. Anonymised data should have both low disclosure risk and high data utility. Data utility is often measured by comparing well-known estimates from original data and anonymised data, such as comparing their means, covariances or eigenvalues. However, it is a fact that not every estimate can be preserved. Therefore the aim is to preserve the most important estimates, that is, instead of calculating generally defined utility measures, evaluation on context/data dependent indicators is proposed. In this article we define such indicators and utility measures for the Structure of Earnings Survey (SES) microdata and proper guidelines for selecting indicators and models, and for evaluating the resulting estimates are given. For this purpose, hundreds of publications in journals and from national statistical agencies were reviewed to gain insight into how the SES data are used for research and which indicators are relevant for policy making. Besides the mathematical description of the indicators and a brief description of the most common models applied to SES, four different anonymisation procedures are applied and the resulting indicators and models are compared to those obtained from the unmodified data. The disclosure risk is reported and the data utility is evaluated for each of the anonymised data sets based on the most important indicators and a model which is often used in practice.

Publisher

Walter de Gruyter GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3