Using the Bootstrap to Account for Linkage Errors when Analysing Probabilistically Linked Categorical Data

Author:

Chipperfield James O.1,Chambers Raymond L.2

Affiliation:

1. Australian Bureau of Statistics, Methodology Division, P O Box 10, Belconnen, Australian Capital Territory 2616 Australia

2. University of Wollongong, National Institute for Applied Statistics Research, Northfields Avenue Wollongong, New South Wales, 2500 Australia

Abstract

Abstract Record linkage is the act of bringing together records that are believed to belong to the same unit (e.g., person or business) from two or more files. Record linkage is not an error-free process and can lead to linking a pair of records that do not belong to the same unit. This occurs because linking fields on the files, which ideally would uniquely identify each unit, are often imperfect. There has been an explosion of record linkage applications, particularly involving government agencies and in the field of health, yet there has been little work on making correct inference using such linked files. Naively treating a linked file as if it were linked without errors can lead to biased inferences. This article develops a method of making inferences for cross tabulated variables when record linkage is not an error-free process. In particular, it develops a parametric bootstrap approach to estimation which can accommodate the sophisticated probabilistic record linkage techniques that are widely used in practice (e.g., 1-1 linkage). The article demonstrates the effectiveness of this method in a simulation and in a real application.

Publisher

Walter de Gruyter GmbH

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Categorical linkage‐data analysis;Statistics in Medicine;2024-06-10

2. Making statistical inferences about linkage errors;Japanese Journal of Statistics and Data Science;2024-02-25

3. Methods for Estimating the Quality of Multisource Statistics;Advances in Business Statistics, Methods and Data Collection;2023-01-20

4. Improving Probabilistic Record Linkage Using Statistical Prediction Models;International Statistical Review;2022-12-04

5. Robust regression using probabilistically linked data;WIREs Computational Statistics;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3