Affiliation:
1. Institute of Limnology, Russian Academy of Sciences , 196105 St. Petersburg , Sevastyanova str. 9 , Russia
Abstract
Abstract
Long-term changes in hydrochemistry and community structure of phytoplankton and macrophytes were analyzed in the Sestroretskiy Razliv reservoir (northwestern Russia). The average content of total phosphorus (TP) in May–October increased from 73 μg P l−1 in 1980 to 163 μg P l−1 in 2000. A significant increase in average chlorophyll a content from 16.6 μg l−1 in 1980 to 84.7 μg l−1 in 2000 and a shift in phytoplankton composition to the dominance of cyanobacteria over diatoms indicated a change in the trophic status of the reservoir from meso-eutrophic to hypertrophic. In 2016 and 2018, average TP was 96 and 101 μg P l−1, respectively. The average content of chlorophyll a was 43.6 μg l−1 in 2016 and 66.6 μg l−1 in warmer 2018, indicating persistent eutrophic conditions. Diatoms dominated both in 2016 and 2018, especially in 2016 characterized by unfavorable weather conditions. Cyanobacteria were more abundant in 2018 with higher summer temperatures. The decline of the total area covered by aquatic vegetation from 157 ha in 1980 to 76 ha in 2016 likely resulted from an increase in phytoplankton biomass and water turbidity. Based on the results of our observations, in addition to further reduction in nutrient loading, biomanipulation by introducing predatory fish as a restoration measure was proposed to improve the ecological status of the reservoir.
Reference51 articles.
1. Ahlgren, G. (1978). Response of phytoplankton and primary production to reduced nutrient loading in Lake Norrwiken. Verh. Internat. Verein Limnol. 20: 840–845.
2. Arthaud, F., Mousset, M., Vallod, D., Robin, J., Wezel, A. et al. (2012). Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes. Freshwater Biol. 57: 666–675. DOI:10.1111/j.1365-2427.2011.02730.x.
3. Belyakov, V.P., Drabkova, V.G., Makartseva, E.S., Prytkova, M.Ya., Sergeeva, L.V. et al. (2002). Current state of Sestroretskiy Razliv. In S.α. Kondratyev & G.T. Frumin (Eds.), Water objects of Saint-Petersburg (pp. 247–266). St.-Petersburg: Simvol (In Russian).
4. Benndorf, J. (1995). Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. Ges. Hydrobiol. Hydrogr. 80: 519–534.
5. Chernova, E.N., Russkikh, Y.V., Voyakina, E.Ju. & Zhakovskaya, Z.A. (2014). Study of natural ecotoxicants – metabolites of blue-green algae in water bodies of different type in the Northwest Russia. Regional Ecology 35(1–2): 88–95 (In Russian with English summary).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献