The FEM Analysis of Stress Distribution in front of the Crack Tip and Fracture Process in the Elements of Modified and Unmodified Cast Steel G17CrMo5-5
Author:
Pała Robert1,
Dzioba Ihor1
Affiliation:
1. Department of Machine Design Fundamentals, Faculty of Mechatronics and Machine Design, Kielce University of Technology, Al. 1000-lecia PP 7, 25-314 Kielce, Poland
Abstract
Abstract
The article presents influence of modification of the low-alloy cast steel G17CrMo5-5 by rare earth metals on stress distribution in front of the crack at the initial moment of the crack extension. Experimental studies include determination of strength and fracture toughness characteristics for unmodified (UM) and modified (M) cast steel. In the numerical computations, experimentally tested specimens SEN(B) were modelled. The true stress–strain curves for the UM and M cast steel are used in the calculation. The stress distributions in front of the crack were calculated at the initial moment of the crack extension. On the basis of data on the particle size inclusions in the UM and M cast steel, and the calculated stress distributions was performed an assessment of the possibility of the occurrence of cleavage fracture. The analysis results indicate that at room temperature for the UM cast steel, there is a possibility of cleavage fracture, while for the M cast steel occurrence of cleavage fracture is negligible.
Publisher
Walter de Gruyter GmbH
Subject
Mechanical Engineering,Control and Systems Engineering