Volume fractal and surface fractal analysis of the pore structure of natural and heat-treated spruce wood using the mercury intrusion porosimetry test

Author:

Gao Yiqin1ORCID,Wang Mingjie1ORCID,Li Yuanyuan1,Li Li1,Chen Yao12

Affiliation:

1. Key Laboratory of Wooden Material Science and Application (Ministry of Education) , Beijing Forestry University , Beijing 100083 , China

2. College of Material Science and Technology , Beijing Forestry University , Haidian District, Qinghua East Rd 35# , Beijing , China

Abstract

Abstract Fractal geometry describes the complex pore structure in natural and heat-treated wood and the relationship between pore structure and wood properties, such as strength, heat conductivity, and transport properties. However, the fractal types and the scale-dependent properties of natural and heat-treated wood remain unclear. In this study, comprehensive fractal analysis of the pore structure of natural and heat-treated spruce wood was carried out based on mercury intrusion porosimetry data. Both the volume fractal and surface fractal of natural and heat-treated wood were determined. The results showed that the two fractal types had different scale-dependent fractal properties. Four regions were identified in the pore structures. A volume fractal region was identified for pores in the region of 2–90 μm, while a surface fractal region was identified for pores in the region of 90 nm–7 μm. The pore structure in the region of 2–90 μm that corresponded to the large pore (the lumina in the cell) range showed strong volume fractal properties, and the fractal dimensions were 2.645–2.884. The pore structure in the region of 90 nm–7 μm that corresponded to the small pore (voids on or in cell walls) range showed strong surface fractal properties, and the fractal dimensions were 2.323–2.999. The range of fractal regions was hardly affected by the heat treatment atmospheres. These results showed that fractal geometry can be used to characterize the pore structures of natural and heat-treated wood. These findings are expected to explain the differences in properties between natural and heat-treated wood in the future.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3