Affiliation:
1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing , 210037 , China
2. College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , 210037 , China
Abstract
Abstract
The degradation of lignin can generate a variety of products with diverse applications. Lignin is abundant on earth; however, its high molecular weight and stable properties impede its development. Currently, acid-catalyzed degradation of lignin is a relatively common and promising catalytic method, particularly DES catalytic degradation, which is not only environmentally friendly but also features an excellent degradation effect. This report discusses the degradation mechanism and effect of the formic acid-choline chloride DES system for the degradation of alkaline lignin. According to fourier transform infrared spectroscopy (FTIR) and 1H-NMR spectroscopy, it is evident that the phenolic hydroxyl content of lignin increases after degradation, which indicates the cleavage of β-O-4′ ether bonds in the macromolecular structure. Gel permeation chromatography (GPC) was employed to determine the molecular weight of degraded lignin, and regenerated lignin with low molecular weight and low dispersibility was obtained. The minimum average molecular weight (M
w
) was 2.3 × 103 g/mol. During the depolymerization process, it was also discovered that the repolymerization and degradation reactions formed a competitive relationship. The lignin oil contained primarily propanoic acid ethyl ester, acetic acid butyl ester, 2-methoxy-4-propyl phenol, 2-methoxy phenol, and apocynin, as determined by GC-MS.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献