Mild depolymerization of alkaline lignin in a formic acid-choline chloride type deep eutectic solvent system

Author:

Li Penghui1ORCID,Li Xiaoyu2,Jiang Zhengwei2,Xu Xuewen1,Jin Yongcan1,Wu Wenjuan1

Affiliation:

1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing , 210037 , China

2. College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , 210037 , China

Abstract

Abstract The degradation of lignin can generate a variety of products with diverse applications. Lignin is abundant on earth; however, its high molecular weight and stable properties impede its development. Currently, acid-catalyzed degradation of lignin is a relatively common and promising catalytic method, particularly DES catalytic degradation, which is not only environmentally friendly but also features an excellent degradation effect. This report discusses the degradation mechanism and effect of the formic acid-choline chloride DES system for the degradation of alkaline lignin. According to fourier transform infrared spectroscopy (FTIR) and 1H-NMR spectroscopy, it is evident that the phenolic hydroxyl content of lignin increases after degradation, which indicates the cleavage of β-O-4′ ether bonds in the macromolecular structure. Gel permeation chromatography (GPC) was employed to determine the molecular weight of degraded lignin, and regenerated lignin with low molecular weight and low dispersibility was obtained. The minimum average molecular weight (M w ) was 2.3 × 103 g/mol. During the depolymerization process, it was also discovered that the repolymerization and degradation reactions formed a competitive relationship. The lignin oil contained primarily propanoic acid ethyl ester, acetic acid butyl ester, 2-methoxy-4-propyl phenol, 2-methoxy phenol, and apocynin, as determined by GC-MS.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3