Dry shrinkage of Moso bamboo in relation to vascular bundle structure

Author:

Zhang Ying12,Xu Haocheng12,Li Jing34,Zhong Tuhua12,Wang Hankun12

Affiliation:

1. Institute of New Bamboo and Rattan Based Biomaterials, International Center for Bamboo and Rattan , Beijing 100102 , China

2. NFGA/Beijing Key Lab for Bamboo & Rattan Science and Technology , Beijing 100102 , China

3. Research Institute of Wood Industry, Chinese Academy of Forestry , Beijing 100091 , China

4. Key Laboratory of National Forestry and Grassland Administration for Wood Science and Technology , Beijing 100091 , China

Abstract

Abstract Bamboo is susceptible to moisture-induced dimensional instability and cracking. Combining traditional methods with vascular bundle detection, the coordinates and fiber sheath area of each vascular bundle was determined accurately. Based on data fitting, the change in the shape of cross-section was quantified and analyzed based on parameters such as radius, radian, and arc length. The changes in the total area and the areas of different types of fiber sheath, as well as the changes in the arrangement of vascular bundles were studied. The results showed that when the moisture content was reduced from 64% to 0%, the radius of the cross section was increased by 21%, while the radian and arc length decreased by 22% and 6%, respectively. The fibers shrunk by 15%, which was greater than that of the other tissues except bamboo fibers (9%). The gradient distribution of the fiber volume fraction contributed to its asynchronous dry shrinkage. Significant radial and tangential displacements were found in vascular bundles. This work further elucidated the dry shrinkage mechanism of bamboo, and was of great significance for the quantitative analysis of changes in bamboo structure from a combination of micro and macro perspectives.

Funder

National Natural Science Foundation of China

Basic Scientific Research Funds of the International Center for Bamboo and Rattan

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3