Effect of pressurized hot water extraction on the resistance of Scots pine sapwood against mould fungi

Author:

Kyyrö Suvi1ORCID,Altgen Michael1,Belt Tiina2,Seppäläinen Hanna1ORCID,Brischke Christian3,Heinze Petra3,Militz Holger3,Rautkari Lauri1

Affiliation:

1. Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16300, 00076 Aalto , Finland

2. Production Systems , Natural Resources Institute Finland , Viikinkaari 9, 00790 Helsinki , Finland

3. Department of Wood Biology and Wood Products , Faculty of Forest Sciences and Forest Ecology, University of Göttingen , Büsgenweg 4, D-37077 Göttingen , Germany

Abstract

Abstract The effects of pressurized hot water extraction (HWE) treatment on the mould resistance of wood have not been extensively investigated yet. The activity of the mould fungi is dependent on the availability of nutrients. Therefore, the soluble degradation products produced during HWE treatment could affect the wood’s susceptibility to mould growth. Scots pine (Pinus sylvestris L.) sapwood specimens were treated with HWE at 140 °C for 1–5 h. Afterwards, the degradation products were either removed via leaching or the wood was dried without applying the leaching procedure. The surface layer (1.5 mm) was removed from half of the leached and non-leached specimens. The resistance of the specimens against mould growth was tested in an incubation chamber. HWE treated wood showed a higher susceptibility to mould growth when it was neither leached nor subjected to surface removal. The susceptibility of wood to mould fungi depended on the availability of hemicellulose-based degradation products produced during HWE treatment. These degradation products were removable via a leaching procedure, but also by removing the outermost layer of the wood. The results show the relevance of removing HWE degradation products located on the wood surface in improving resistance against mould growth.

Funder

Financial support from the Academy of Finland

South Savo Regional Council of the European Regional Development Fund

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3