Optimal biased Kriging: Homeogram tapering and applications to geoid undulations in Korea

Author:

Schaffrin B.,Bae T.-S.,Felus Y.

Abstract

Abstract This article studies the Optimal Biased Kriging (OBK) approach which is an alternative geostatistical method that gives up the unbiasedness condition of Ordinary Kriging (OK) to gain an improved Mean Squared Prediction Error (MSPE). The system of equations for the optimal linear biased Kriging predictor is derived and itsMSPE is compared with that of Ordinary Kriging. A major impediment in implementing this system of equations and performing Kriging interpolation with massive datasets is the inversion of the spatial coherency matrix. This problem is investigated and a novel method, called “homeogram tapering”, which exploits spatial sorting techniques to create sparse matrices for efficient matrix inversion, is described. Finally, as an application, results from experiments performed on a geoid undulation dataset from Korea are presented. A precise geoid is usually the indispensable basis for meaningful hydrological studies over wide areas. These experiments use the theory presented here along with a relatively new spatial coherency measure, called the homeogram, also known as the non-centered covariance function.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Reference29 articles.

1. New distance measures : The route toward truly non - Gaussian geostatistics;Journel;Mathematical Geology,1988

2. Six factors which affect the condition number of matrices associated with;Davis;Mathematical Geology,1997

3. New methods for spatial statistics in geographic information systems dissertation of Civil The Ohio State University Ohio;Felus;Environ Engineering Sci,2001

4. sampler for computing and propagating large covariance matrices;Gundlich;Geodesy,2003

5. Efficient approximation of the spatial covariance function for large data sets - Analysis of atmospheric CO concentrations;Vetter;Environ Statist,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3