Signal and error assessment of GOCE-based high resolution gravity field models

Author:

Gruber T.,Willberg M.

Abstract

Abstract The signal content and error level of recent GOCE-based high resolution gravity field models is assessed by means of signal degree variances and comparisons to independent GNSS-levelling geoid heights. The signal of the spherical harmonic series of these models is compared to the pre-GOCE EGM2008 model in order to identify the impact of GOCE data, of improved surface and altimetric gravity data and of modelling approaches. Results of the signal analysis show that in a global average roughly 80% of the differences are due to the inclusion of GOCE satellite information, while the remaining 20% are contributed by improved surface data. Comparisons of the global models to GNSS-levelling derived geoid heights demonstrate that a 1 cm geoid from the global model is feasible, if there is a high quality terrestrial gravity data set available. For areas with less good coverage an accuracy of several centimetres to a decimetre is feasible taking into account that GOCE provides now the geoid with a centimetre accuracy at spatial scales of 80 to 100 km. Comparisons with GNSS-levelling geoid heights also are a good tool to investigate possible systematic errors in the global models, in the spirit levelling and in the GNSS height observations. By means of geoid height differences and geoid slope differences one can draw conclusions for each regional data set separately. These conclusions need to be considered for a refined analysis e.g. to eliminate suspicious GNSS-levelling data, to improve the global modelling by using full variance-covariance matrices and by consistently weighting the various data sources used for high resolution gravity field models. The paper describes the applied procedures, shows results for these geoid height and geoid slope differences for some regional data sets and draws conclusions about possible error sources and future work to be done in this context.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3