Application of GNSS derived precipitable water vapour prediction in West Africa

Author:

Acheampong A.,Obeng K.

Abstract

Abstract Atmospheric water vapour, a major component in weather systems serves as the main source for precipitation, provides latent heat which helps maintain the earth’s energy balance and a major parameter in Numerical Weather Prediction (NWP) models. An observational technique based on the Global Navigation Satellite System (GNSS) has made it possible to easily retrieve Precipitable Water (PW) at station’s antenna position with very high spatial and temporal variabilities. GNSS techniques are superior to ground-based and balloons sensors in terms of accuracy, ease of use, wider coverage and easier assimilation into NWP models. This study sought to use prediction models using daily observational data from Four (4) International GNSS Service stations in West Africa. The best prediction model can be used in cases of station outages and to predict PW over data poor regions using computed Zenith Tropospheric Delays (ZTD). gLAB software was used to process the stations’ data in Precise Point Positioning mode and PW were retrieved using station’s temperature and pressure values. Computed PW were compared against Total Column Water Vapour from ERA-Interim Reanalysis data in 2016. Correlation coefficient (R2) values ranging from 0.947 — 0.995 were obtained for the four stations. With computed PW’s, three regression models were tested to find the best-fit with PW as the dependent variable and ZTD being the independent variable. The quadratic model gave the highest R2 and lowest RMSE values as against the linear and exponential models. Time series forecasts models such as moving average, autoregressive, exponential smoothing and autoregressive integrated moving average were also employed. The forecasts results were compared against ZTD with autoregressive model reporting the highest R2 and lowest RMSE amongst the forecast models developed.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Reference45 articles.

1. Application of GPS derived water vapour for numerical weather prediction in Switzerland thesis Bern University;Guerova,2003

2. Decadal variations in atmospheric water vapor time series estimated using GNSS ERA - Interim and synoptic data In EGU General Ass;Alshawaf,2017

3. Numerical weather prediction hybrid ARMA model to predict global radiation;Voyant;ANN Energy,2012

4. GPS meteorology Mapping zenith wet delays onto precipitable water Meteor;Bevis;Appl,1994

5. de of the state of the art and future prospects of the ground - based GNSS meteorology in Europe;Guerova;Review Tech,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3