Inference for copula modeling of discrete data: a cautionary tale and some facts

Author:

Faugeras Olivier P.1

Affiliation:

1. 1Toulouse School of Economics - Université Toulouse Capitole, Manufacture des Tabacs, Bureau MF319, 21 Allée de Brienne, 31000 Toulouse, France

Abstract

AbstractIn this note, we elucidate some of the mathematical, statistical and epistemological issues involved in using copulas to model discrete data. We contrast the possible use of (nonparametric) copula methods versus the problematic use of parametric copula models. For the latter, we stress, among other issues, the possibility of obtaining impossible models, arising from model misspecification or unidentifiability of the copula parameter.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference36 articles.

1. Extending the rank likelihood for semiparametric copula estimation;Hoff;Ann Appl Stat,2007

2. Copulas Tales facts rejoinder Extremes;Mikosch,2006

3. Volume Third edition Hindustan Agency New Delhi;Tao;Analysis,2014

4. Stochastically ordered distributions and monotonicity of the OC - function of sequential probability ratio tests;Rüschendorf;Math Operationforsch Stat Ser Statist,1981

5. On the distributional transform theorem the empirical copula process;Rüschendorf;Stat Plan Infer,2009

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariate simulation‐based forecasting for intraday power markets: Modeling cross‐product price effects;Applied Stochastic Models in Business and Industry;2024-01-25

2. (Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem;Mathematics;2024-01-24

3. Virtual Patient Simulation Using Copula Modeling;Clinical Pharmacology & Therapeutics;2023-11-24

4. Copula modeling from Abe Sklar to the present day;Journal of Multivariate Analysis;2023-11

5. Mixture copulas with discrete margins and their application to imbalanced data;Journal of the Korean Statistical Society;2023-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3