Dependence measure for length-biased survival data using copulas

Author:

Bentoumi Rachid1,Mesfioui Mhamed2,Alvo Mayer3

Affiliation:

1. Department of Mathematics and Statistics, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates

2. Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières (Québec) Canada G9A 5H7

3. Department of Mathematics and Statistics, University of Ottawa, STEM Complex, room 336, 150 Louis-Pasteur Pvt Ottawa, ON, Canada K1N 6N5

Abstract

AbstractThe linear correlation coefficient of Bravais-Pearson is considered a powerful indicator when the dependency relationship is linear and the error variate is normally distributed. Unfortunately in finance and in survival analysis the dependency relationship may not be linear. In such case, the use of rank-based measures of dependence, like Kendall’s tau or Spearman rho are recommended. In this direction, under length-biased sampling, measures of the degree of dependence between the survival time and the covariates appear to have not received much intention in the literature. Our goal in this paper, is to provide an alternative indicator of dependence measure, based on the concept of information gain, using the parametric copulas. In particular, the extension of the Kent’s [18] dependence measure to length-biased survival data is proposed. The performance of the proposed method is demonstrated through simulations studies.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Modelling and Simulation,Statistics and Probability

Reference33 articles.

1. On information sufficiency;Kullback;Ann Math Statist,1951

2. Length - biased sampling in contingent valuation studies;Nowell,1988

3. Measure of Dependence for Length - biased Survival Data thesis University of Ottawa;Bentoumi,2017

4. Weak convergence of empirical copula processes;Fermanian;Bernoulli,2004

5. Optimal scheduling of examinations for the early detection of disease;Zelen;Biometrika,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential Tilting and Its Applications;Statistical Inference and Machine Learning for Big Data;2022

2. Multivariate Methods;Statistical Inference and Machine Learning for Big Data;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3