A posteriori error analysis of Banach spaces-based fully-mixed finite element methods for Boussinesq-type models

Author:

Gatica Gabriel N.1,Inzunza Cristian1,Ruiz-Baier Ricardo234,Sandoval Felipe1

Affiliation:

1. CI MA and Departamento de Ingeniería Matemática , Universidad de Concepción , Casilla 160-C , Concepción , Chile

2. School of Mathematics, Monash University , 9 Rainforest Walk , Clayton , 3800 VIC , Australia

3. Institute of Computer Science and Mathematical Modelling , Sechenov University , Moscow , Russian Federation

4. Universidad Adventista de Chile , Casilla 7-D , Chillán , Chile

Abstract

Abstract In this paper we consider Banach spaces-based fully-mixed variational formulations recently proposed for the Boussinesq and the Oberbeck–Boussinesq models, and develop reliable and efficient residual-based a posteriori error estimators for the 2D and 3D versions of the associated mixed finite element schemes. For the reliability analysis, we employ the global inf-sup condition for each sub-model, namely Navier–Stokes and heat equations in the case of Boussinesq, along with suitable Helmholtz decomposition in nonstandard Banach spaces, the approximation properties of the Raviart–Thomas and Clément interpolants, further regularity on the continuous solutions, and small data assumptions. In turn, the efficiency estimates follow from inverse inequalities and the localization technique through bubble functions in adequately defined local Lp spaces. Finally, several numerical results including natural convection in 3D differentially heated enclosures, are reported with the aim of confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithm.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Numerical Analysis

Reference39 articles.

1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, NJ, 1965.

2. M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS project version 1.5, Arch. Numer. Softw., 3 (2015), No. 100, 9–23.

3. K. Allali, A priori and a posteriori error estimates for Boussinesq equations, Int. J. Numer. Anal. Model., 2 (2005), 179–196.

4. A. Allendes, C. Naranjo, and E. Otárola, Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis, Comput. Methods Appl. Mech. Engrg., 361 (2020), Art. 112703.

5. A. Allendes, E. Otárola, and A. J. Salgado, A posteriori error estimates for the stationary Navier–Stokes equations with Dirac measures, SIAM J. Sci. Comput., 42 (2020), No. 3, A1860–A1884.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3