Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
Author:
Affiliation:
1. IT4Innovations, VSB - Technical University of Ostrava , Ostrava , Czech Republic
2. Department of Applied Mathematics , Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava , Ostrava , Czech Republic
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Computational Mathematics
Link
https://www.degruyter.com/document/doi/10.1515/jnma-2020-0048/pdf
Reference34 articles.
1. S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math. 83 (1999), 187–203.
2. T. Brzobohatý, M. Jarošová, T. Kozubek, M. Menšík, and A. Markopoulos, The hybrid total FETI method. In: Proc. of the 3rd Int. Conf. on Parallel, Distributed, Grid, and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire, 2013, paper 2.
3. Z. Dostál and D. Horák, Theoretically supported scalable FETI for numerical solution of variational inequalities, SIAM J. Numer. Anal. 45 (2007), No. 2, 500–513.
4. Z. Dostál, D. Horák, T. Brzobohatý, and P. Vodstrčil, Bounds on the spectra of Schur complements of large H-TFETI clusters for 2D Laplacian and applications, Numer. Lin. Agebra Appl. 28 (2021), No. 2, e2344.
5. Z. Dostál, D. Horák, and R. Kučera., Total FETI – an easier implementable variant of the FETI method for numerical solution of elliptic PDE, Commun. Numer. Methods Engrg. 22 (2006), 1155–1162.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On favorable bounds on the spectrum of discretized Steklov-Poincaré operator and applications to domain decomposition methods in 2D;Computers & Mathematics with Applications;2024-08
2. Hybrid TFETI and TBETI;Scalable Algorithms for Contact Problems;2023
3. Hybrid TFETI domain decomposition with the clusters joined by faces’ rigid modes for solving huge 3D elastic problems;Computational Mechanics;2022-11-04
4. Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities;Numerical Algorithms;2022-04-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3