Adaptive space-time finite element methods for parabolic optimal control problems

Author:

Langer Ulrich1,Schafelner Andreas2

Affiliation:

1. Institute for Computational Mathematics , Johannes Kepler University Linz , Altenbergerstr. 69, A-4040 , Linz , Austria

2. Doctoral Program ”Computational Mathematics” , Johannes Kepler University Linz , Altenbergerstr. 69, A-4040 , Linz , Austria

Abstract

Abstract We present, analyze, and test locally stabilized space-time finite element methods on fully unstructured simplicial space-time meshes for the numerical solution of space-time tracking parabolic optimal control problems with the standard L 2-regularization. We derive a priori discretization error estimates in terms of the local mesh-sizes for shape-regular meshes. The adaptive version is driven by local residual error indicators, or, alternatively, by local error indicators derived from a new functional a posteriori error estimator. The latter provides a guaranteed upper bound of the error, but is more costly than the residual error indicators. We perform numerical tests for benchmark examples having different features. In particular, we consider a discontinuous target in form of a first expanding and then contracting ball in 3d that is fixed in the 4d space-time cylinder.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics

Reference55 articles.

1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Academic Press & Elsevier, 2003.

2. T. Apel, A.-M. Sändig and J. R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), 63–85.

3. I. Babuška, Error-bounds for finite element method, Numer. Math. 16 (1971), 322–333.

4. I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundation of the finite element method, in: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 1–359, Academic Press, New York, 1972.

5. R.E. Bank, P.S. Vassilevski and L.T. Zikatanov, Arbitrary dimension convection-diffusion schemes for space-time discretizations., J. Comput. Appl. Math. 310 (2017), 19–31 (English).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3