An Assessment of Solvers for Algebraically Stabilized Discretizations of Convection-Diffusion-Reaction Equations
Author:
Jha Abhinav1, Pártl Ondřej2, Ahmed Naveed3, Kuzmin Dmitri4
Affiliation:
1. RWTH Aachen University, Applied and Computational Mathematics , Schinkelstraße 2, 52062 , Aachen , Germany 2. Weierstrass Institute for Applied Analysis and Stochastics (WIAS) , Mohrenstr. 39, 10117 Berlin , Germany 3. Gulf University for Science & Technology , Block 5, Building 1, Mubarak Al-Abdullah Area , West Mishref Kuwait 4. Institute of Applied Mathematics (LS III), TU Dortmund University , Vogelpothsweg 87, D-44227 Dortmund , Germany
Abstract
Abstract
We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and P1 or Q1 finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.
Publisher
Walter de Gruyter GmbH
Subject
Computational Mathematics
Reference25 articles.
1. N. Ahmed and V. John. Adaptive time step control for higher order variational time discretizations applied to convection–diffusion–reaction equations. Computer Methods in Applied Mechanics and Engineering, 285:83–101, 2015. 2. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page. .*? 2019. 3. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.14, Argonne National Laboratory, 2020. 4. S. Balay, W. D. Gropp, L. C. M., and B. F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997. 5. G. R. Barrenechea, V. John, and P. Knobloch. Analysis of algebraic flux correction schemes. SIAM J. Numer. Anal., 54(4):2427–2451, 2016.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|