Potential application of elastic nets for shared polygenicity detection with adapted threshold selection

Author:

John Majnu123ORCID,Lencz Todd124ORCID

Affiliation:

1. Institute of Behavioral Science, Feinstein Institutes of Medical Research , Manhasset , NY , USA

2. Division of Psychiatry Research , The Zucker Hillside Hospital, Northwell Health System , Glen Oaks , NY , USA

3. Departments of Psychiatry and of Mathematics , Hofstra University , Hempstead , NY , USA

4. Departments of Psychiatry and of Molecular Medicine , Zucker School of Medicine at Hofstra/Northwell , Hempstead , NY , USA

Abstract

Abstract Current research suggests that hundreds to thousands of single nucleotide polymorphisms (SNPs) with small to modest effect sizes contribute to the genetic basis of many disorders, a phenomenon labeled as polygenicity. Additionally, many such disorders demonstrate polygenic overlap, in which risk alleles are shared at associated genetic loci. A simple strategy to detect polygenic overlap between two phenotypes is based on rank-ordering the univariate p-values from two genome-wide association studies (GWASs). Although high-dimensional variable selection strategies such as Lasso and elastic nets have been utilized in other GWAS analysis settings, they are yet to be utilized for detecting shared polygenicity. In this paper, we illustrate how elastic nets, with polygenic scores as the dependent variable and with appropriate adaptation in selecting the penalty parameter, may be utilized for detecting a subset of SNPs involved in shared polygenicity. We provide theory to better understand our approaches, and illustrate their utility using synthetic datasets. Results from extensive simulations are presented comparing the elastic net approaches with the rank ordering approach, in various scenarios. Results from simulations studies exhibit one of the elastic net approaches to be superior when the correlations among the SNPs are high. Finally, we apply the methods on two real datasets to illustrate further the capabilities, limitations and differences among the methods.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3