Author:
Van Kuilenburg André B.P.,Meinsma Rutger,Beke Eva,Bobba Barbara,Boffi Patrizia,Enns Gregory M.,Witt David R.,Dobritzsch Doreen
Abstract
AbstractDihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil and thymine, as well as of the widely used chemotherapeutic drug 5-fluorouracil (5FU). Analysis of the DPD gene (DPYD) in two patients presenting with complete DPD deficiency and the parents of an affected child showed the presence of three novel mutations, including one splice site mutation IVS11+1G→T and the missense mutations 731A→C (E244V) and 1651G→A (A551T). The G→T mutation in the invariant GT splice donor site flanking exon 11 (IVS11+1G→T) created a cryptic splice site within exon 11. As a consequence, a 141-bp fragment encoding the aminoacid residues 400–446 of the primary sequence of the DPD protein was missing in the mature DPD mRNA. Analysis of the crystal structure of pig DPD suggested that the E244V mutation might interfere with the electron flow between NADPH and the pyrimidine binding site of DPD. The A551T point mutation might prevent binding of the prosthetic group FMN and affect folding of the DPD protein. The identification of these novel mutations inDPYDwill allow the identification of patients with an increased risk of developing severe 5FU-associated toxicity.
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献