Influential eradication of resistant Salmonella Typhimurium using bioactive nanocomposites from chitosan and radish seed-synthesized nanoselenium

Author:

El Rabey Haddad A.12,Almassabi Rehab F.1,Mohammed Ghena M.3,Abbas Nasser H.2,Bakry Nadia45,Althiyabi Abdullah S.1,Alshubayli Ibrahim H.1,Tayel Ahmed A.6

Affiliation:

1. Biochemistry Department, Faculty of Science, University of Tabuk , 71491 , Tabuk , Saudi Arabia

2. Genetic Engineering and Biotechnology Research Institute, University of Sadat City , Sadat City , Egypt

3. Nutrition Department, Faculty of Science University of Tabuk , 71491 , Tabuk , Saudi Arabia

4. Bone Marrow Transplantation and Cord Blood Unit, Mansoura University Children Hospital , Mansoura , Egypt

5. Department of Biochemistry, Faculty of Medicine, Mansoura University , Mansoura , Egypt

6. Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh , 33516 , Egypt

Abstract

Abstract Biosynthesized nanomaterials and nanocomposites (NCs) could have promising potentialities to overcome the multi-drug-resistant (MDR) pathogenic bacteria, particularly Salmonella Typhimurium. Radish seed (Raphanus sativus) mucilage (RSM) was employed for synthesizing/capping selenium nanoparticles (SeNPs) and their nanoconjugates with chitosan (Ct) were assessed for inhibiting MDR S. typhimurium. The SeNPs were effectually biosynthesized using RSM and have 4.21 nm mean size and −25.6 mV surface charge. Different NC formulations of Ct/RSM/SeNPs were generated and validated using infrared spectroscopy and electron microscopy. The entire formulations could suppress S. Typhimurium growth, including MDR strains. F3 NCs (with 53.64 nm diameter and +21.1 mV surface charge) had the strongest anti-S. Typhimurium activity that exceeded the action of cephalosporin, and the subsequent antibacterial formulation was F2 (with 41.77 nm diameter and −17.3 mV charge). The NCs of Ct/RSM/SeNPs could severely destruct, deform, and lyse S. Typhimurium cells’ structures throughout 10 h of exposure. The innovative fabricated NCs of Ct/RSM/SeNPs are auspiciously suggested as effectual biocides to eradicate MDR S. Typhimurium in various food-processing facilities.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3