Synapses: Multitasking Global Players in the Brain

Author:

Lübke Joachim H. R.1ORCID,Rollenhagen Astrid2

Affiliation:

1. Research Centre Jülich GmbH Institute of Neuroscience and Medicine INM-10 Leo-Brandt Str., 52425 Jülich Phone: 02461/612288 Jülich Germany

2. Research Centre Jülich GmbH Institute of Neuroscience and Medicine INM-10 Leo-Brandt Str., 52425 Jülich Jülich Germany

Abstract

Abstract Synapses are key elements in the communication between neurons in any given network of the normal adult, developmental and pathologically altered brain. Synapses are composed of nearly the same structural subelements: a presynaptic terminal containing mitochondria with an ultrastructurally visible density at the pre- and postsynaptic apposition zone. The presynaptic density is composed of a cocktail of various synaptic proteins involved in the binding, priming and docking of synaptic vesicles inducing synaptic transmission. Individual presynaptic terminals (synaptic boutons) contain a couple of hundred up to thousands of synaptic vesicles. The pre- and postsynaptic densities are separated by a synaptic cleft. The postsynaptic density, also containing various synaptic proteins and more importantly various neurotransmitter receptors and their subunits specifically composed and arranged at individual synaptic complexes, reside at the target structures of the presynaptic boutons that could be somata, dendrites, spines or initial segments of axons. Beside the importance of the network in which synapses are integrated, their individual structural composition critically determines the dynamic properties within a given connection or the computations of the entire network, in particular, the number, size and shape of the active zone, the structural equivalent to a functional neurotransmitter release site, together with the size and organization of the three functionally defined pools of synaptic vesicles, namely the readily releasable, the recycling and the resting pool, are important structural subelements governing the ‘behavior’ of synaptic complexes within a given network such as the cortical column. In the late last century, neuroscientists started to generate quantitative 3D-models of synaptic boutons and their target structures that is one possible way to correlate structure with function, thus allowing reliable predictions about their function. The re-introduction of electron microscopy (EM) as an important tool achieved by modern high-end, high-resolution transmission-EM, focused ion beam scanning-EM, CRYO-EM and EM-tomography have enormously improved our knowledge about the synaptic organization of the brain not only in various animal species, but also allowed new insights in the ‘microcosms’ of the human brain in health and disease.

Publisher

Walter de Gruyter GmbH

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3