Density Forecast of Financial Returns Using Decomposition and Maximum Entropy

Author:

Lee Tae-Hwy1,Wang He2,Xi Zhou3,Zhang Ru4

Affiliation:

1. Department of Economics , University of California , Riverside , CA 92521 , USA

2. Department of Insurance , University of International Business and Economics , Beijing , China

3. Citigroup , Dallas , USA

4. JPMorgan Chase , Dallas , USA

Abstract

Abstract We consider a multiplicative decomposition of the financial returns to improve the density forecasts of financial returns. The multiplicative decomposition is based on the identity that financial return is the product of its absolute value and its sign. Advantages of modeling the two components are discussed. To reduce the effect of the estimation error due to the multiplicative decomposition in estimation of the density forecast model, we impose a moment constraint that the conditional mean forecast is set to match with the sample mean. Imposing such a moment constraint operates a shrinkage and tilts the density forecast of the decomposition model to produce the improved maximum entropy density forecast. An empirical application to forecasting density of the daily stock returns demonstrates the benefits of using the decomposition and imposing the moment constraint to obtain the improved density forecast. We evaluate the density forecast by comparing the logarithmic score (LS), the quantile score (QS), and the continuous ranked probability score (CRPS). We contribute to the literature on the density forecast and the decomposition models by showing that the density forecast of the decomposition model can be improved by imposing a sensible constraint in the maximum entropy framework.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Economics and Econometrics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3