Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models

Author:

Blazsek Szabolcs1,Escribano Alvaro2,Licht Adrian1

Affiliation:

1. School of Business, Universidad Francisco Marroquín , Ciudad de Guatemala 01010 , Guatemala

2. Department of Economics , Universidad Carlos III de Madrid , Getafe 28903 , Spain

Abstract

Abstract For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.

Funder

Comunidad de Madrid

Ministerio de Economía, Industria y Competitividad

Universidad Francisco Marroquín

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Economics and Econometrics,Statistics and Probability

Reference25 articles.

1. Alemany, N., V. Aragó, and E. Salvador. 2019. “The Influence of Intraday Seasonality on Volatility Transmission Pattern.” Quantitative Finance 19 (7): 1179–97, https://doi.org/10.1080/14697688.2018.1563304.

2. Alsmeyer, G. 2003. “On the Harris Recurrence of Iterated Random Lipschitz Functions and Related Convergence Rate Results.” Journal of Theoretical Probability 16 (1): 217–47, https://doi.org/10.1023/a:1022290807360.

3. Barsky, R. B., and L. Kilian. 2004. “Oil and the Macroeconomy since the 1970s’.” Journal of Economic Perspectives 18 (4): 115–34, https://doi.org/10.1257/0895330042632708.

4. Blanchard, O. J. 2002. “Comments on “Do We Really Know that Oil Caused the Great Stagnation? A Monetary Alternative” by Robert Barsky and Lutz Kilian.” In NBER Macroeconomics Annual, 183–92, edited by B. S. Bernanke, and K. Rogoff. Cambridge, MA: MIT Press.

5. Blazsek, S., and A. Escribano. 2017. “Score-Driven Nonlinear Multivariate Dynamic Location Models.” Department of Economics, University Carlos III of Madrid, Working Paper 17-08.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3