Affiliation:
1. Institut de Physique, Université de Neuchâtel — Suisse
Abstract
The Weyl-Wigner transformation enables us to construct a representation of quantum motion equations using functions in phase space. The states of the system are determined by the quasiprobability distribution in phase space and the motion is described by an orthogonal integral operator. This formalism is employed in the study of the classical meaning of the discrete symmetry groups, in the problem of defining the current probability and in the proving of the expression of cross section from the S-matrix.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献