Copper Replacement of Magnesium in the Chlorophylls and Bacteriochlorophyll

Author:

Kim W. S.1

Affiliation:

1. Exobiology Division, Ames Research Center, NASA, Moffett Field, Calif.

Abstract

Copper chelates of chlorophylls “a” and “b” and an oxidized form of bacteriochlorophyll “a” were prepared and separated by an improved method of column and thin-layer chromatography, and their physical properties and thermodynamics involved in the primary metal replacement reaction were studied. In glacial acetic acid the Mg (II) ions of the photosynthetic pigments were replaced rapidly by Cu (II) ions at 40 — 100° and profound physical changes were noted in the chelation products. Copper chelates were not fluorescent while their parent pigments and pheophytins were. A general lowering of absorbance and a blue shift of absorption maxima were observed with the copper complexes. The molar absorptivity values of copper chelates were determined by the metallic microtitration method and the direct analysis of chelated copper by the oxalyldihydrazide (ODH) of copper method. In the present assay, the primary reaction of copper replacement of Mg (II) in the 3 photosynthetic pigments was the bimolecular SE2 type. The primary reaction lasted only a short time (1 — 5 min) at temperatures of 40 — 90°, and the higher the temperature, the larger the constants of the bimolecular reaction became. On longer treatment, the metal replacement reaction was complicated by the increasing content of pheophytin. The reaction rate constants became progressively smaller in the order of chlorophyll “a” — “b”-bacteriochlorophyll “a”. At 70° the half lives of 20 μΜ chlorophylls “a” and “b” and bacteriochlorophyll “a” for the copper replacement were 1.2, 15.2, and 117.4 minutes, respectively. Based on transition state theory, some thermodynamic constants relevant to this primary metal substitution reaction at various temperatures were calculated, and the possible mechanism involved were discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3