Ribonucleic Acid from Reovirus as Seen in Protein Monolayers by Electron Microscopy

Author:

Dunnebacke T. H.1,Kleinschmidt A. K.1

Affiliation:

1. Virus Laboratory, University of California, Berkeley, California, 94720, U.S.A.

Abstract

The ribonucleic acid of reovirus was extracted with 2 M sodium perchlorate solution and spread by the protein monolayer technique. Areas of the monolayer were transferred to support films, rotary shadowed, and observed in the electron microscope. Filaments of RNA obtained by extraction prior to spreading were similar in appearance and in distribution of contour lengths (0.2 to 1.2 μ) to those obtained by phenol extraction of the virus. Most of the filaments resulting from extraction of the virus suspension during spreading on a sodium perchlorate solution, however, were longer than 1 μ. The lengths of the longest filaments exceeded the 5 μ length predicted from chemical data for one single piece of complementary-stranded RNA in the reovirus particle. The short filaments, 1.2 μ and less in length, fell into a tri-modal pattern of length distribution with peaks at 0.35 μ, 0.60 μ and 1.10 μ. These shorter lengths probably resulted from breakage of the intact RNA during the extraction procedures. The consistently observed pattern of length distribution suggests that they represent relatively stable subunits of the molecule. Sodium perchlorate extracted reovirus RNA was thermally denatured in formaldehyde prior to spreading by the protein monolayer technique. Length distributions and relative numbers of filaments in the peaks of the tri-modal distribution pattern were similar to those found for unheated material when extracted prior to spreading. This similarity indicates that heating subsequent to extraction produced no further filament breakage. The thin, kinky appearance of the heated filaments, and the appearance of congruent pairs, indicated that heating had separated the strands of the complementary-stranded RNA subunits.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3