Wlan–Based Indoor Localization Using Neural Networks

Author:

Saleem Fasiha12,Wyne Shurjeel1

Affiliation:

1. Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan

2. Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan

Abstract

Abstract Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

Publisher

Walter de Gruyter GmbH

Reference29 articles.

1. SEYED, A.—ZEKAVAT, R—BUEHRER, R. M. : Handbook of Position Location: Theory, Practice and Advances, Wiley-IEEE Press, 2011.

2. STELLA, M—RUSSO, M.—BEGUI, D. : F localization in indoor environment, Radioengineering 21 No. 2 (2012), 557-567.

3. DJABRI, F.—LIU, R. : Wi-Fi-Based localization in dynamic indoor environment using a dynamic neural network, International Journal of Machine Learning and Computing 3 No. 1 (2013), 127-131.

4. ALONSO, J. M. et al : Towards People Indoor Localization Combining WiFi and Human Motion Recognition, XV Congreso Espanol Sobre Tecnologas y Lgica Fuzzy (2010), 7-12.

5. DAWES, B.—CHIN, K.-W. : A comparison of deterministic and probabilistic methods for indoor localization, The Journal of Systems and Software 84 No. 3 (2011), 442-451.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3