Psoralidin exerts anti-tumor, anti-angiogenic, and immunostimulatory activities in 4T1 tumor‐bearing balb/c mice

Author:

Amani Davar1,Shakiba Elham2,Motaghi Ehsan3,Alipanah Hiva4,Jalalpourroodsari Mahshad5,Rashidi Mohsen6

Affiliation:

1. Department of Immunology , Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran

2. Department of Biochemistry , Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University , Tehran , Iran

3. Department of Physiology and Pharmacology , School of Medicine, Kurdistan University of Medical Sciences , Sanandaj , Iran

4. Department of Physiology and Pharmacology , Faculty of Medicine, Fasa University of Medical Science , Fasa , Iran

5. Department of English , Macquarie University , Sydney , Australia

6. Department of Pharmacology , Faculty of Medicine, Mazandaran University of Medical Sciences , Sari , Iran

Abstract

Abstract Background Psoralidin as a compound of the Psoralea corylifolia seeds exhibited several anti-cancer potentials in various cancers. Materials and methods In this study, 4T1 tumor‐bearing Balb/c mice were treated by intraperitoneal administration of Psoralidin, and Paraffin, as a control group to investigate anti-tumor, anti-angiogenic, and immunostimulatory activities in breast cancer. Body weight and tumor volume measurement were performed. Hematoxylin and Eosin (H&E) staining as well as immunohistochemistry for Ki-67, CD31 and VEGF markers were conducted. In addition, ELISA assay was performed for evaluating the serum level of IFN-γ and IL-4. Moreover, real time assay was performed to evaluate the expression of angiogenesis and immunostimulatory related genes. Results There were no significant changes in the body weight of all animal groups. The anti-cancer effects of Psoralidin were significantly observed after 24 days of the last treatment, confirmed by smaller tumor volume and also H&E staining. The expression level of Ki‐67, CD31 and VEGF were significantly decreased in tumor tissues of the Psoralidin-treated group in comparison with Paraffin-treated group. Moreover, there was a significant reduction in the serum level of IL-4 in tumor-bearing mice after Psoralidin treatment while the serum level of IFN-γ was significantly augmented in all groups. Moreover, the reduction in expression of VEGF-a and IL-1β was observed. Interestingly Psoralidin treatment led to expression increase of FOXp3. Conclusions Psoralidin shows the anti-cancer potential in an animal model of breast cancer; however, further studies are recommended to elucidate its mechanisms of action.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Reference37 articles.

1. Maroufi, NF, Amiri, M, Dizaji, BF, Vahedian, V, Akbarzadeh, M, Roshanravan, N, et al.. Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial–mesenchymal transition (EMT) in breast cancer stem cells. Eur J Pharmacol 2020;881:173282. https://doi.org/10.1016/j.ejphar.2020.173282.

2. Pourmohammad, P, Maroufi, NF, Rashidi, M, Vahedian, V, Pouremamali, F, Faridvand, Y, et al.. Potential therapeutic effects of melatonin mediate via miRNAs in cancer. Biochem Genet 2021:1–23. https://doi.org/10.1007/s10528-021-10104-4.

3. Maroufi, NF, Vahedian, V, Akbarzadeh, M, Mohammadian, M, Zahedi, M, Isazadeh, A, et al.. The apatinib inhibits breast cancer cell line MDA-MB-231 in vitro by inducing apoptosis, cell cycle arrest, and regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Breast Cancer 2020;27:1–8. https://doi.org/10.1007/s12282-020-01055-6.

4. Maroufi, NF, Vahedian, V, Mazrakhondi, SAM, Kooti, W, Khiavy, HA, Bazzaz, R, et al.. Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. N Schmied Arch Pharmacol 2020;393:1–11. https://doi.org/10.1007/s00210-019-01692-5.

5. Ghorbani, M, Mahmoodzadeh, F, Jannat, B, Maroufi, NF, Hashemi, B, Roshangar, L. Glutathione and pH‐responsive fluorescent nanogels for cell imaging and targeted methotrexate delivery. Polym Adv Technol 2019;30:1847–55. https://doi.org/10.1002/pat.4617.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3