3-Iodothyronamine and 3,5,3′-triiodo-L-thyronine reduce SIRT1 protein expression in the HepG2 cell line

Author:

Sacripanti Ginevra1,Lorenzini Leonardo1,Bandini Lavinia1,Frascarelli Sabina1,Zucchi Riccardo1,Ghelardoni Sandra1

Affiliation:

1. Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy

Abstract

AbstractBackground3-Iodothyronamine (T1AM) is an endogenous messenger chemically related to thyroid hormone. Recent results indicate significant transcriptional effects of chronic T1AM administration involving the protein family of sirtuins, which regulate important metabolic pathways and tumor progression. Therefore, the aim of this work was to compare the effect of exogenous T1AM and 3,5,3′-triiodo-L-thyronine (T3) chronic treatment on mammalian sirtuin expression in hepatocellular carcinoma cells (HepG2) and in primary rat hepatocytes at micromolar concentrations.Materials and methodsSirtuin (SIRT) activity and expression were determined using a colorimetric assay and Western blot analysis, respectively, in cells treated for 24 h with 1–20 μM T1AM or T3. In addition, cell viability was evaluated by the MTTtest upon 24 h of treatment with 0.1–20 μM T1AM or T3.ResultsIn HepG2, T1AM significantly reduced SIRT 1 (20 μM) and SIRT4 (10–20 μM) protein expression, while T3 strongly decreased the expression of SIRT1 (20 μM) and SIRT2 (any tested concentration). In primary rat hepatocytes, T3 decreased SIRT2 expression and cellular nicotinamide adenine dinucleotide (NAD) concentration, while on sirtuin activity it showed opposite effects, depending on the evaluated cell fraction. The extent of MTT staining was moderately but significantly reduced by T1AM, particularly in HepG2 cells, whereas T3 reduced cell viability only in the tumor cell line.ConclusionsT1AM and T3 downregulated the expression of sirtuins, mainly SIRT1, in hepatocytes, albeit in different ways. Differences in mechanisms are only observational, and further investigations are required to highlight the potential role of T1AM and T3 in modulating sirtuin expression and, therefore, in regulating cell cycle or tumorigenesis.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3