Author:
Andersson Seppo,Serimaa Ritva,Väänänen Tiina,Paakkari Timo,Jämsä Saila,Viitaniemi Pertti
Abstract
AbstractWood is thermally modified by heating and steaming in order to change its properties, e.g., to improve the biological resistance and to increase the hardness of wood. The structure of thermally modified Scots pine (Pinus sylvestris) was studied using wide-angle, small-angle and ultra-small-angle X-ray scattering methods. Modification temperatures varied from 100 to 240°C. No marked changes in the microfibril angle distribution were observed. The mass fraction of crystalline cellulose in wood (the crystallinity of wood) and the size of cellulose crystallites increased above 150°C. After modification at 230°C for 4 h the thickness of the cellulose crystallites increased from 3.1 to 3.4 nm. Thermal modification had no effect on the orientation of the voids, but an increase in the porosity of the cell wall was observed. The distance between cellulose crystallites was approximately 4.7 nm in hydrated wood and a decrease in order between microfibrils was observed at 160–200°C.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献