Evaluation of magnetic and electrochemical performance of copper oxide nanoparticles using Myristica fragrans (mace) extract

Author:

Murugan Shandhiya1,Balraj Deepika1,Amirtharajan Saranya2,Manimuthu Ramesh P3,N Venkata Rama R4,Balasundaram Janarthanan1,Ziaudeen Mohamed R3,Saminathan Sharmila2ORCID

Affiliation:

1. Energy and Nano Research Laboratory, Department of Physics , Karpagam Academy of Higher Education , Coimbatore , Tamil Nadu , India

2. Department of Physics , Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology , Chennai , Tamil Nadu , India

3. School of Physics , Alagappa University , Karaikudi , India

4. Defence Metallurgical Research Laboratory , Hyderabad , 500058 , India

Abstract

Abstract The synthesis of metal oxide nanoparticles using natural extract encourages the futuristic design of an environmentally friendly system by getting rid of the dangerous, toxic substances. The food industry in India is paying a lot of attention to Myristica fragrans, often known as mace, due to its rich medicinal significance. In the current study, M. fragrans (Mace) aqueous extract was used to prepare copper oxide (CuO) nanoparticles. Phytochemical screening confirms the presence of bioactive substances such as alkaloids, sterols, glycosides, and flavonoids in the extract. XRD and SEM measurements show that the nanoparticles have a monoclinic structure with polyhedral shape. Using the Debye-Scherrer formula, the material’s average crystallite size was found to be 85 nm. Based on the Tauc plot, an optical band gap of the prepared CuO NPs was calculated as 2.6 eV. At room temperature, the material’s magnetic property was investigated using VSM analysis. Congo red was used to examine the photocatalytic properties of the materials with various timings. CuO nanoparticles’ antibacterial activity was evaluated at various doses against Staphylococcus aureus and Klebsiella pneumoniae. Almost, CuO NPs exhibit better response against both the bacteria. Moreover, research investigations using cyclic voltammetry was carried out to assess the produced nanoparticles’ pseudocapacitive qualities. At a scan rate of 10 mV s−1, the material produced a good specific capacitance of 233.8 F/g with 1 M of KOH as an electrolyte.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3